UNEXPECTED AFFECTS OF Me3SI-X ON REACTIONS OF HIGHER ORDER CYANOCUPRATES

Bruce H. Lipshutz, *1 Edmund L. Ellsworth, Teruna J. Siahaan and Ata Shirazi

Department of Chemistry, University of California Santa Barbara, CA 93106

Abstract: The assumed compatibility of Me₃SiCl with higher order cyanocuprates has been studied by both chemical and spectroscopic (^IH, ⁷Li, ²⁹Si NMR) means. Both types of experiments confirm that Me₃Si-X significantly alters the composition of both homo (R₂Cu(CN)Li₂) and mixed (RR'Cu(CN)Li₂) reagents.

The remarkable impact of TMS-Cl in conjugate addition reactions of organocopper and organocuprate complexes has lead to widespread acceptance of this additive.² Since there is no measurable interaction of TMS-Cl with α,β -unsaturated ketones, it's role has been considered to be one of trapping the intermediate enolate reversibly formed from the addition of a copper anion to the β -position of the enone.^{2f} Implied in this scenario is the complete compatibility of the cuprate with TMS-Cl. There is growing evidence, however, that such an assumption is incorrect,^{2a,b} and indeed the significant modification of both lower order (L.O.)³ and higher order (H.O.)⁴ cuprates by BF₃·Et₂O has recently been demonstrated. We now report that TMS-halides undergo an immediate and irreversible reaction with H.O. cuprates, affording different species which appear to be responsible for the chemistry observed.

The unanticipated affect of TMS-Cl was initially noted in 1,2-additions of $Bu_2Cu(CN)Li_2$ (<u>1</u>) to an α -substituted aldehyde <u>2</u>. While <u>1</u> itself adds to <u>2</u> at -78° over 4 h to afford (after hydrolysis) a 1:1 mix of <u>syn</u> and <u>anti</u> diastereomers <u>3</u>a,b, the same reaction conducted in the presence of 2 equiv TMS-Cl leads to a 7:1 ratio. This is curious, since the additive is presumed to exert an influence only with respect to reaction rate,^{2f} coming into play <u>after</u> the 1,2-addition has occurred. Mixed cuprates <u>4</u> and <u>5</u> (see Table I), which by themselves are relatively unreactive under these conditions, not only now lead to <u>3</u>a,b in high yields, but to ratios on the order of 12-13:1. Other trimethylsilyl halides were also examined, as summarized in Table I. Interestingly, Me₂SiCl₂ gave results similar to TMS-Cl, while TMS-Br was the reagent of choice here, affording an impressive 17-19:1 ratio in excellent yield.⁵ It also assisted in consuming <u>2</u> more rapidly than did the other silyl additives.

6677

From these surprisingly diastereoselective additions it was anticipated that TMS-C1 might be altering the cuprates themselves, perhaps by infiltration of the cluster or by removal of RLi (or R'Li) from the dianion as observed with BF₃.⁴ We therefore turned to low temperature, high field ¹H, ⁷Li, and ²⁹Si NMR to examine the nature of the interaction between H.O. cuprates and TMS-C1. Homocuprate Me₂Cu(CN)Li₂ (<u>6</u>), as well as mixed cuprates <u>4</u> and <u>5</u> (R = Me), were all studied in THF. Treatment of <u>6</u> (which by itself gives a single peak in the ¹H NMR spectrum at δ -1.59 ppm) with 2TMS-C1 (δ 0.38 ppm) at -92° leads to new peaks at δ -1.44, 0.02, and in particular, at 0.31 ppm corresponding to TMS-CN. Upon warming to -80°, the new peaks all grow at the expense of the original two species present. Additional peaks at δ -0.04 and -1.31 ppm also appear (Fig. 1).^{6,7} The remarkable occurrence of TMS-CN reveals that TMS-C1 is sequestering the cyano ligand from the H.O. cuprate.⁸ The necessary outcome of this action is the generation of a lower order cuprate, R₂CuLi, plus LiCl (Eq. 1). Thus, the peak in the ¹H NMR furthest upfield in Figure 1 is predominantly Me₂CuLi, and not Me₂Cu(CN)Li₂! The ²⁹Si NMR (Fig. 2) confirms the presence of TMS-CN as the major species.

$$Me_2Cu(CN)Li_2 + 2TMS-CI \xrightarrow{THF} Me_2CuLi + TMS-CN + TMS-CI + LiCI ...(1)$$

Cuprates <u>4</u> and <u>5</u> (R - Me) were examined in a like manner. Reagent <u>4</u>, with an acetylenic moiety isoelectronic with the cyanide ligand, follows two pathways of interaction with TMS-Cl (Eq. 2). That is, both TMS-CN and silylated acetylene (MeOC(Me)₂C=C-TMS) are observed in the PMR spectrum, the former in excess. The ²⁹Si NMR spectrum at -85° corroborates the existence of these two species (Fig. 3), as does the ⁷Li NMR, where the singlet for <u>4</u> (alone) moves from δ -0.70 ppm to a LiCl-like δ -0.10 (LiCl/MeOH as internal standard labelled as δ 0.00 ppm).

The mixed cuprate $\underline{5}$ (R - Me), in addition to surrendering its nitrile ligand to TMS-Cl, also gives up a small but observable percentage of the 2-thienyl group, to form 2-trimethylsilylthiophene as established by ²⁹Si NMR (Fig. 4). The proton NMR in the δ 0.5 to -2.0 ppm region shows the usual signals for TMS-Cl, TMS-CN, and both cuprates MeCu(CN)Li and Me(2-Th)CuLi (Fig. 5). The ⁷Li NMR spectrum for $\underline{5}$ + 2TMS-Cl displays a dramatic shift from δ -0.92 (for $\underline{5}$ alone) to δ -0.06 ppm, again very close to that for LiCl.

The importance of TMS-CN, together with TMS-Cl, for enhancing diastereoselective 1,2additions was checked chemically by comparison experiments using cuprates $\underline{4}$ (R = n-Bu) and $\underline{7}$ $(Bu(MeOC(Me)_2C=C)CuL1)$ on educt $\underline{2}$ (Scheme 1). From Eq. 2, it was expected that competitive removal of the acetylene group from $\underline{4}$ by TMS-Cl would decrease consumption of $\underline{2}$, since the remaining MeCu(CN)Li is unreactive under these conditions (case 1).⁹ The 1,2-addition of preformed $\underline{7}$ in the absence of TMS-CN (case 3) was expected to suffer at least in terms of the

<u>syn:anti</u> ratio of $\underline{3}a:\underline{3}b$ formed. The best case scenario was predicted to be that where $\underline{7}$ is reacted in the presence of both TMS-CN and TMS-Cl (case 2). In the event, indeed the highest yields and ratios of products are realized when both of these additives are in the medium.

* Using 1eq TMS-CN alone gave 35% products (7:1) + mainly cyanohydrin. **The reaction with 2TMS-CN gave only a 50% yield as a mix (8.5:1) of diastereomers; the major competing process was cyanohydrin formation.

In summary, H.O. cuprates are not compatible with TMS-C1, but react at low temperatures to form L.O. cuprates and TMS-CN. The presence of this <u>in-situ</u> formed additive (i.e. TMS-CN) leads to increased Cram selectivities for L.O. cuprate 1,2-additions in an as yet undetermined way. These spectroscopic and chemical data also suggest that L.O. cuprates are themselves unaffected by these additives, ¹⁰ although TMS-X derivatives clearly play a still elusive role in various types of cuprate coupling processes.

Acknowledgement. Financial support for this work provided by the donors of the Petroleum Research Fund, and the NSF (CHE 87-03757), is gratefully acknowledged.

References and Notes

- 1. A.P. Sloan Fellow, 1984-1988; Dreyfus Teacher-Scholar, 1984-1989.
- 2. (a) M. Bergdahl, E.-L. Lindtstedt, M. Nilsson, T. Olsson, Tetrahedron, 44, 2055 (1988);
 - (b) E.-L. Lindstedt, M. Nilsson, T. Olsson, J. Organomet. Chem., 334, 255 (1987);
 - (c) C.R. Johnson, T.J. Marren, Tetrahedron Lett., 28, 27 (1987);
 - (d) A. Alexakis, J. Berlan, Y. Besace, <u>ibid.</u>, <u>27</u>, 1047 (1986);
 - (e) E. Nakamura, S. Matsuzawa, Y. Horiguchi, I. Kuwajima, <u>ibid.</u>, <u>27</u>, 4029 (1986);
 - (f) E.J. Corey, N.W. Boaz, <u>ibid.</u>, <u>26</u>, 6015, 6019 (1985).

3. B.H. Lipshutz, E.L. Ellsworth, T.J. Siahaan, submitted for publication.

4. B.H. Lipshutz. E.L. Ellsworth, T.J. Siahaan, J. Am. Chem. Soc., <u>110</u>, 4834 (1988).

- 5. The generality of these observations is presently being investigated.
- 6. The minor peak at δ -0.45 is due to an impurity in the MeLi.
- 7. NMR spectra were recorded for all pure species prepared individually.
- 8. The TMS-Br reacts with H.O. mixed cuprates to a far greater extent (by ¹H NMR) at -78° than does TMS-Cl to give much higher percentages of TMS-CN.
- 9. LiI (1 equiv) was added to the H.O. cuprate to provide this by-product of L.O. cuprate formation.
- 10. E.g., the ²⁹Si NMR spectrum of Me(MeOC(Me)₂C=C)CuLi + 2TMS-C1 shows no MeOC(Me)₂C=C-TMS.

(Received in USA 24 August 1988)